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FIG. 1: Model Parameter Sensitivity Spectra. A) Analyzing Hχ2

corresponds to approximating the

surfaces of constant model behavior change (constant χ2) as ellipsoids. The width of each principal

axis is proportional to one over the square root of the corresponding eigenvalue. The inner ellipsoid’s

projection onto and intersection with the log θ1 axis are denoted P1 and I1, respectively. B) Plotted

are the eigenvalue spectra of Hχ2

for our collection of systems biology models [2, 14, 19, 22–35].

The number following each entry in the legend indicates the number of parameters in the model.

C) Plotted is is the spectrum of P/I for each parameter in each model in our collection. The

generally large ranges of logarithmically-spaced eigenvalues and large values of P/I indicated that

these models all have sloppy parameter sensitivities. (The eigenvalue spectra have each been

normalized by their largest eigenvalue. Both sets of spectra have been shifted along the x-axis for

clarity, and not all elements are visible for all models.)



Complex Biology

eukaryote, based on a mechanism that is almost fully spec-
ified at the genetic level.

As explained in MATERIALS AND METHODS, we turn
the mechanistic hypothesis (Figure 1) into a mathematical
model (Table 1) with a preliminary set of kinetic constants
(Table 2). Next, we solve these equations numerically and
show, in RESULTS, that the solutions are in accord with the
physiological properties of 120 mutant strains of budding
yeast out of 131 studied so far (Table 3). There are 11
mutants that the model fails to account for, and these fail-
ures identify aspects of the mechanism that need further
investigation. We also show how to use the model to inter-
pret existing data, to design new experiments, and to think
about the “molecular logic” of cell cycle regulation.

MATERIALS AND METHODS

A Quantitative Mathematical Model
The molecular mechanism in Figure 1 is a hypothetical account of the chem-
ical reactions among the genes and proteins known to play principal roles in
controlling the cell cycle of budding yeast. The mechanism summarizes
information from many publications on the individual genes, their patterns of
expression, and the interactions among their encoded proteins. To simplify
the wiring diagram, we combine redundant cyclins (Cln2, Clb5, and Clb2 in
the model refer, respectively, to Cln1 ! Cln2, Clb5 ! Clb6, and Clb1 ! Clb2),
and we ignore Clbs 3 and 4. As demonstrated by Cross et al. (2002), the kinase
subunit Cdc28 that is associated with each cyclin is present in excess, so it
need not be presented in the diagram or the equations.

A wiring diagram is a set of boxes (components) interconnected by arrows
(reactions). An instantaneous state of the system is a specification of the
current concentrations of all its components. Given a state of the system, the

Figure 1. Consensus model of the cell cycle control mechanism in budding yeast. (For a full justification of this diagram, with references
to the original literature, see our Web site at http://mpf.biol.vt.edu.) The diagram should be read from bottom left toward top right. (In the
diagram, Cln2 stands for Cln1 and 2, Clb5 for Clb5 and 6, and Clb2 for Clb1 and 2; furthermore, the kinase partner of the cyclins, Cdc28, is
not shown explicitly. There is an excess of Cdc28 and it combines rapidly with cyclins as soon as they are synthesized.) Newborn daughter
cells must grow to a critical size to have enough Cln3 and Bck2 to activate the transcription factors MBF and SBF, which drive synthesis of
two classes of cyclins, Cln2 and Clb5. Cln2 is primarily responsible for bud emergence and Clb5 for initiating DNA synthesis. Clb5-dependent
kinase activity is not immediately evident because the G1-phase cell is full of cyclin-dependent kinase inhibitors (CKI; namely, Sic1 and
Cdc6). After the CKIs are phosphorylated by Cln2/Cdc28, they are rapidly degraded by SCF, releasing Clb5/Cdc28 to do its job. A fourth
class of “mitotic cyclins,” denoted Clb2, are out of the picture in G1 because their transcription factor Mcm1 is inactive, their degradation
pathway Cdh1/APC is active, and their stoichiometric inhibitors CKI are abundant. Cln2- and Clb5-dependent kinases remove CKI and
inactivate Cdh1, allowing Clb2 to accumulate, after some delay, as it activates its own transcription factor, Mcm1. Clb2/Cdc28 turns off SBF
and MBF. (Clb5/Cdc28 is probably the other down-regulator of MBF.) As Clb2/Cdc28 drives the cell into mitosis, it also sets the stage for
exit from mitosis by stimulating the synthesis of Cdc20 and by phosphorylating components of the APC (see text for details). Meanwhile,
Cdc20/APC is kept inactive by the Mad2-dependent checkpoint signal responsive to unattached chromosomes. When the replicated
chromosomes are attached, active Cdc20/APC initiates mitotic exit. First, it degrades Pds1, releasing Esp1, a protease involved in sister
chromatid separation. It also degrades Clb5 and partially Clb2, lowering their potency on Cdh1 inactivation. In this model, Cdc20/APC
promotes degradation of a phosphatase (PPX) that has been keeping Net1 in its unphosphorylated form, which binds with Cdc14. As the
attached chromosomes are properly aligned on the metaphase spindle, Tem1 is activated, which in turn activates Cdc15 (the endpoint of the
“MEN” signal-transduction pathway in the model). When Net1 gets phosphorylated by Cdc15, it releases its hold on Cdc14. Cdc14 (a
phosphatase) then does battle against the cyclin-dependent kinases: activating Cdh1, stabilizing CKIs, and activating Swi5 (the transcription
factor for CKIs). In this manner, Cdc14 returns the cell to G1 phase (no cyclins, abundant CKIs, and active Cdh1).

K.C. Chen et al.

Molecular Biology of the Cell3842

Chen et al. Mol. Biol. Cell 15:3841–3862 (2004)

Budding yeast
cell cycle

Tyson group’s
model has

131 free parameters
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FIG. 1: Model Parameter Sensitivity Spectra. A) Analyzing Hχ2

corresponds to approximating the

surfaces of constant model behavior change (constant χ2) as ellipsoids. The width of each principal

axis is proportional to one over the square root of the corresponding eigenvalue. The inner ellipsoid’s

projection onto and intersection with the log θ1 axis are denoted P1 and I1, respectively. B) Plotted

are the eigenvalue spectra of Hχ2

for our collection of systems biology models [2, 14, 19, 22–35].

The number following each entry in the legend indicates the number of parameters in the model.

C) Plotted is is the spectrum of P/I for each parameter in each model in our collection. The

generally large ranges of logarithmically-spaced eigenvalues and large values of P/I indicated that

these models all have sloppy parameter sensitivities. (The eigenvalue spectra have each been

normalized by their largest eigenvalue. Both sets of spectra have been shifted along the x-axis for
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Quadratic approximation:

            : (scalar) measure 
of the difference in model 

behavior between 
parameters   and   .
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Gutenkunst et al. arXiv:q-bio.QM/0701039
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Falsifiable Predictions

Calculate prediction 
uncertainties over an ensemble 
of parameter sets consistent 

with available data.

Akt/PKB

PI3K
Ras

Extracellular

Cytosol
EGFR NGFR

mSos

Raf1

Mek1/2

Erk1/2

p90/RSK

C3G

Rap1

B-Raf

48 parameters

Brown et al., Phys. Biol. 1:184 (2004)

Growth factor 
signaling in PC12 cells
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Refining Predictions
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FIG. 3: Total surface receptor numbers after EGF stimulation in stably expressing v-Src cells. Endogenous levels of
Cool-1 (dashed curve) or overexpressed Cool-1 (solid curve). The dotted lines show the uncertainties in each of the
best fit predictions
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FIG. 4: Predictions with uncertainty on the time course of the triple complex consisting of active Cool-1, Cbl and
active Cdc42. The quantity plotted is the percentage of total Cbl that is bound in the triple complex.

However the uncertainty bounds are too large to make this assertion; at the level of the lower bound, less
than 4% of Cbl is sequestered at a maximum, and the triple complex dissociates within 15 minutes. This
motivates the need for an optimal design approach. We define a criterion which is the average uncertainty
in the prediction on the triple complex. We then optimize this quantity using a sequential design approach
(therefore we need to perform only line minimizations in the time coordinate for each of the 11 measurable
species in the system) and follow up by finding an approximate optimal continuous design on that species.
The results of such an analysis are shown in Fig. 5.

However, its function in mediating endocytosis still remains controversial (e.g. [11, 12, 13, 14, 15]) as the
receptor can be internalized through more than one endocytic pathway. We do not address that issue here
but rather we assume in our model that Cbl association and activation is necessary for endocytosis, whether
through a CIN85-endophilin interaction [16] or through ubiquitination of the receptor [15] and therefore we
do not include a separate Cbl-independent endocytosis pathway. The overall set of these protein-protein
interactions is summarized in Fig. 1 (we also incorporate phosphatases in the model to act on the various
phosphorylated species, but this is not shown in the network figure). There is a significant overlap between
our model and previous models of EGF receptor signaling and/or trafficking, [17, 18, 19, 20]. Since we
wish to focus on the role of the Cool-1/Cdc42 proteins within the network and to demonstrate the utility
of optimal experimental design, we leave out some of the known intermediate reactions involved in the
MAPK and EGFR-Src activation pathways, preferring a “lumped” description which is more computationally
manageable.

FIG. 1: Schematic diagram showing the set of interactions in the model of EGFR signaling, endocytosis and down-
regulation (see also [1]). Phosphatases are not shown.

The goals of this manuscript are to demonstrate how a modeling approach can be used to

(a) refine the necessary set of interactions in the biological network,

(b) make predictions on unmeasured components of the system with good precision and

(c) reduce the prediction uncertainty on components that are difficult to measure directly, by using the
methods of optimal experimental design.

Casey et al.
IEE Proc. Sys. Biol. in press, 
arXiv:q-bio.MN/0610024

Loosely constrained 
prediction
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FIG. 7: (a) Without refitting to the new total active Cdc42 data, our prediction matches the data using only a single
multiplicative factor. a.u. = arbitrary units. (b) Reduced uncertainty on the time course of the active Cool, Cbl,
and active Cdc42 complex for the optimal set of design points (dashed line) (same as Fig. 5 (b) ) and for the real
data (dotted line).

The second part of the process is to make predictions on the unmeasured or unmeasurable species of the
system, assuming that the model has been suitably refined. We suggest that for testable predictions to be
made, uncertainty estimates need to be attached to them [26]. In some cases the prediction uncertainties
are rather small, despite large parameter uncertainty. On the other hand, if some predictions show large
uncertainty, and involve species that are not directly measurable, we may then define a suitable design
criterion and suggest new experimental measurements that need to be taken to reduce that uncertainty. The
results of such an analysis are promising, in that we find a rather small number of measurements (realistic
to perform with standard molecular biology techniques) need be taken to begin to make predictions with
good precision. Given such measurements on the EGFR system, we see that the triple complex of active
Cool-1, Cbl and active Cdc42 does indeed form in appreciable quantities in wild type cells and we also get
an estimate for the time of formation and dissociation.

More generally, we believe that experimental design for reducing prediction uncertainties can play an
important role in the iterative process of model refinement and validation and can be used in the testing of
biological hypotheses.

However, its function in mediating endocytosis still remains controversial (e.g. [11, 12, 13, 14, 15]) as the
receptor can be internalized through more than one endocytic pathway. We do not address that issue here
but rather we assume in our model that Cbl association and activation is necessary for endocytosis, whether
through a CIN85-endophilin interaction [16] or through ubiquitination of the receptor [15] and therefore we
do not include a separate Cbl-independent endocytosis pathway. The overall set of these protein-protein
interactions is summarized in Fig. 1 (we also incorporate phosphatases in the model to act on the various
phosphorylated species, but this is not shown in the network figure). There is a significant overlap between
our model and previous models of EGF receptor signaling and/or trafficking, [17, 18, 19, 20]. Since we
wish to focus on the role of the Cool-1/Cdc42 proteins within the network and to demonstrate the utility
of optimal experimental design, we leave out some of the known intermediate reactions involved in the
MAPK and EGFR-Src activation pathways, preferring a “lumped” description which is more computationally
manageable.

FIG. 1: Schematic diagram showing the set of interactions in the model of EGFR signaling, endocytosis and down-
regulation (see also [1]). Phosphatases are not shown.

The goals of this manuscript are to demonstrate how a modeling approach can be used to

(a) refine the necessary set of interactions in the biological network,

(b) make predictions on unmeasured components of the system with good precision and

(c) reduce the prediction uncertainty on components that are difficult to measure directly, by using the
methods of optimal experimental design.

Optimized 
experimental design
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FIG. 7: (a) Without refitting to the new total active Cdc42 data, our prediction matches the data using only a single
multiplicative factor. a.u. = arbitrary units. (b) Reduced uncertainty on the time course of the active Cool, Cbl,
and active Cdc42 complex for the optimal set of design points (dashed line) (same as Fig. 5 (b) ) and for the real
data (dotted line).

The second part of the process is to make predictions on the unmeasured or unmeasurable species of the
system, assuming that the model has been suitably refined. We suggest that for testable predictions to be
made, uncertainty estimates need to be attached to them [26]. In some cases the prediction uncertainties
are rather small, despite large parameter uncertainty. On the other hand, if some predictions show large
uncertainty, and involve species that are not directly measurable, we may then define a suitable design
criterion and suggest new experimental measurements that need to be taken to reduce that uncertainty. The
results of such an analysis are promising, in that we find a rather small number of measurements (realistic
to perform with standard molecular biology techniques) need be taken to begin to make predictions with
good precision. Given such measurements on the EGFR system, we see that the triple complex of active
Cool-1, Cbl and active Cdc42 does indeed form in appreciable quantities in wild type cells and we also get
an estimate for the time of formation and dissociation.

More generally, we believe that experimental design for reducing prediction uncertainties can play an
important role in the iterative process of model refinement and validation and can be used in the testing of
biological hypotheses.

Usefully tight
prediction
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• Notable features

• System Biology Markup Language import/export

• Sensitivity integration (                   )

• Parameter ensembles Markov-Chain Monte-
Carlo with importance sampling

• Parallel execution via MPI

• F2Py interface to Fortran DAE integrator

• with Jordan Atlas, Bob Kuczenski and               
Kevin Brown 
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Hypothesis: Fitness is Sloppy
1029WING-SHAPE DIMENSIONALITY

FIG. 1. Identity of the landmarks used in this study.

March 12, 2002, at Wabasso, Indian River County, Florida.

The stock was maintained on cornmeal, sucrose, and brewer’s

yeast medium in bottles at 25!C with alternating 12-h light
and dark cycles. The flies were transferred to fresh containers

every two weeks. Initially, and through the first half of the

study, the stock was maintained as isofemale lines. These

were later pooled into a single breeding population, which

was maintained in 10 bottles at a density of approximately

40 parental flies/bottle. At each transfer, adults from different

bottles were mixed.

A half-sib breeding design was carried out in 36 temporal

blocks, each consisting of four to six half-sib families. For

the blocks 1–17, males were chosen at random from isofemale

lines and were mated to four or five virgin females, each from

a different isofemale line. Isofemale lines should become

progressively more inbred over time. To check whether in-

breeding might have affected the estimates from this part of

the experiment, we regressed the sire component of variance

from sibling data on block number. There was no evidence

of a relationship between these (analysis not shown), sug-

gesting that inbreeding remained low. For blocks 18–36, a

male was mated to four or five virgin females, where each

individual was selected at random from the pooled popula-

tion. Comparison of data from the two parts of the experiment

similarly suggested that there were no differences between

them.

In the first part of the experiment, parents were reared in

vials, and in the second part in bottles. Virgin parents were

collected within 10 h of eclosion, aged for two to six days,

then mated for three days. Female parents were allowed to

lay eggs for two days in each of two replicate vials. One

wing from each parent and from approximately five offspring

of each sex from each vial were measured. The upper surface

of left wings was measured whenever possible. When the left

wing was damaged, the upper right wing was recorded in-

stead.

Wing Measurement and Morphometrics

Wing measurement was performed using WingMachine,

an automated image analysis system, the details of which are

described elsewhere (Houle et al. 2003). WingMachine con-

sists of a suction device that holds the wing of an anesthetized

fly between a slide and a cover slip to allow a video image

of the wing to be captured. The image of each wing plus two

landmarks provided by a human observer were passed to an

image processing system which fits B-splines (Lu and Milios

1994) to all wing veins posterior to the humeral break, plus

the outline of the wing. Twelve intersections of these splines

define the landmark coordinates used in these analyses (Fig.

1).

The data were aligned by generalized Procrustes least

squares superimposition (Rohlf and Slice 1990) implemented

in the tpsRegr program (Rohlf 1998b). In this approach,

wings are first scaled to unit centroid size, where centroid

size is the square root of the sum of squared distances of

each landmark from the centroid of each wing. The centroid

is the mean of the landmark coordinates for that specimen.

Scaling by centroid size is optimal for minimizing the dif-

ferences in wing size when variances are equal at each land-

mark. After scaling, the wings were aligned by finding the

minimum squared distance between the landmarks that can

be achieved by translating each landmark polygon to a com-

mon centroid position and then rotating the wings with re-

spect to one another. Separate superimpositions were run on

males and females because there is a difference in shape

between the sexes. The result of the superimposition is that

each wing is represented by the x- and y-coordinates of the

displacement of each landmark from the centroid, measured

in units of centroid size.

Following alignment, a robust covariance matrix was fit

to the data using the minimum-volume ellipsoid approach

(Rousseeuw and van Zomeren 1990), as implemented in the

S-Plus program cov.mve (Insightful Corporation 2001). This

covariance matrix was then used to identify potential outliers,

which were then checked by a human observer and corrected

when necessary using the digitization program TPSdig (Rohlf

1998a). Manual adjustments were performed by two observ-

ers. Landmark adjustment introduced negligible error and

was ignored in the subsequent analysis. Throughout this pa-
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FIG. 3. Distribution of eigenvalues in the total additive genetic
covariance matrices for females (above) and males (below). Solid
circles are the eigenvalues from the full analysis, including vial
effects. The open squares show the median values from the boot-
strap estimates, while the upper and lower limits denote the 95th
and fifth percentiles of the bootstrap results. Solid triangles are
estimates from the distance-based analysis.

last slopes indicate that each successive eigenvalue decreases

by about 29% in females and 26% in males. The rate of

decrease in the distance analysis is slightly higher: !0.183
" 0.005 for the first 19 eigenvalues in females (explaining

99.0% of the variation) and !0.175 " 0.006 in males (ex-

plaining 98.2% of the variation). This is a decrease of about

34% per dimension. These are both remarkably shallow rates

of decrease compared to other eigenvalue distributions for

morphological data. For example, Kirkpatrick and Lofsvold

(1992) showed distributions of eigenvalues that decline by

three orders of magnitude over about four vectors, while ours

declined that much over approximately 20 vectors.

DISCUSSION

The main result of our analyses is that we were able to

detect additive genetic variation with high confidence in al-

most every dimension of form that we measured. We first

discuss some other aspects of our results before returning to

this fundamental result below.

A striking aspect of our results is that there is little co-

variance between the aligned landmark data and centroid size,

indicating little allometric variation in shape. The lack of

allometric shape variation in our study contrasts with strong

allometries found when the environment is manipulated to

create variance in size (Weber 1990). There is also strong

allometry for wing shape among species in the family Dro-

sophilidae (D. Houle and K. van der Linde, unpubl. data).

Because wing size is a reasonable proxy for body size (Reeve

and Robertson 1953; David et al. 1977), these results suggest

that allometry in these other settings is the consequence of

joint selection on size and shape, rather than of develop-

mental constraints.

Different landmarks in our study show very different levels

of phenotypic and genetic variation, with the most variable

point, landmark 1, showing about four times the variation in

the least variable, landmark 11 (see supplementary online

material). It is possible that these patterns are biologically

significant, but they are also to some extent a function of the

algorithm used to superimpose the point configurations in the

first step of our analyses. The algorithm we used would be-

have well if the variation in point locations were homoge-

neous and independent, an assumption that is clearly incorrect

for our data. The mean landmark configuration itself influ-

ences the weight assigned to variation at each point. Thus,

we have not necessarily recovered the variance-covariance

pattern that best reflects the biological processes that gave

rise to the variation (Rohlf and Slice 1990; Walker 2000).

The relative variation of points from this and all geometric

morphometric analyses must be interpreted cautiously.

Previous studies have indicated that X chromosome effects

explained about 20% of the genetic variation in morphology

in D. melanogaster (Cowley et al. 1986; Cowley and Atchley

1988), as expected from the proportion of genes found on

the X chromosome. The relative variation in males and fe-

males also was accurately predicted by an assumption of

perfect dosage compensation in males relative to females.

Our data showed several patterns consistent with the impor-

tance of X effects, such as larger covariance between female

parents and offspring than males, and between female half-

sibs than for males, and larger error variances in males rel-

ative to females. Given these results, we fit a causal model

with male and female additive X-linked effects assuming

complete dosage compensation. We rarely detected signifi-

cant X-linked additive variation (Table 2). This probably re-

flects insufficient power as the average size of the X effect

was a substantial 13% of the total additive variance (Table

3). This is somewhat lower than the proportion of genes on

the X chromosome. It is interesting to note that two QTL

studies of wing shape (Zimmerman et al. 2000; Mezey et al.

2005) found a noticeable paucity of QTL on the X chro-

mosome. This result could be explained by lower wing-shape

gene density on the X chromosome and therefore, indirectly,

lower power to detect QTL, since the combined effects of

genes with small effects producing a QTL signal may be

expected to be lower (Noor et al. 2001). However, the small-

er-than-expected amount of variation attributable to the X

chromosome in our study suggests that the small X-effect

may be a biological phenomenon.

Our results show a consistently high heritability of land-

mark displacements, between 33% and 77% for all traits. All

traits in both sexes showed significant additive genetic var-

iation in either the parent-offspring or the full analysis. Con-

Mezey and Houle
Evolution 59:1027 (2005)

Logsdon et al.
in preparation
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Figure 2. Dependence of φ(t) and η(t) on K and Cη

Figure 3. A Selection of Possible Wing Kinematics. The lines represent a wing chord
cross-section, and the dots are placed on the same edge of the wing throughout the stroke.

2.4. Aerodynamic Force Model
The forces acting upon a wing are found via the model formulated to study the motion of
a free-falling plate (Pesavento & Wang (2004); Andersen et al. (2005b)) combined with a
blade-element assumption that the total force on the wing is the sum of forces on many
infinitesimal segments was used. This is a quasi-2D force model, as the instantaneous

Berman and Wang
J. Fluid Mech. in press
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FIG. 1: Model Parameter Sensitivity Spectra. A) Analyzing Hχ2

corresponds to approximating the

surfaces of constant model behavior change (constant χ2) as ellipsoids. The width of each principal

axis is proportional to one over the square root of the corresponding eigenvalue. The inner ellipsoid’s

projection onto and intersection with the log θ1 axis are denoted P1 and I1, respectively. B) Plotted

are the eigenvalue spectra of Hχ2

for our collection of systems biology models [2, 14, 19, 22–35].

The number following each entry in the legend indicates the number of parameters in the model.

C) Plotted is is the spectrum of P/I for each parameter in each model in our collection. The

generally large ranges of logarithmically-spaced eigenvalues and large values of P/I indicated that

these models all have sloppy parameter sensitivities. (The eigenvalue spectra have each been

normalized by their largest eigenvalue. Both sets of spectra have been shifted along the x-axis for

clarity, and not all elements are visible for all models.)
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Connecting to Experiments
Observe the first few adaptations 

of a microbial population to a 
new environment.

Hypothesis: Population will often 
hop onto narrow ridge of high 
fitness.  Finite population size 
may then become important.

Sella and Hirsch
PNAS 102:9541 (2005)

We seek analytic expressions for 
the distribution of fitness 

changes, in the Strong-Selection, 
Weak-Mutation limit.



How does a population respond 
to gradual changes in the 

underlying fitness landscape?

Linear Response

Expand initial state into 
eigenvectors of the Markov 

process. Convergence 
dominated by the smallest 

eigenvalues.



Conclusions
Sloppiness is universal in

complex biology.

Consequently, collective 
parameter fits most 

efficiently constrain model 
predictions.

We’re exploring the 
implications for evolution in 

a simple model.
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